

Home Search Collections Journals About Contact us My IOPscience

A phenomenological model for the rare-earth contribution to the magnetic anisotropy in  $RFe_{11}$ Ti and  $RFe_{11}$ TiH

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2006 J. Phys.: Condens. Matter 18 221 (http://iopscience.iop.org/0953-8984/18/1/016)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 28/05/2010 at 07:59

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 18 (2006) 221-242

# A phenomenological model for the rare-earth contribution to the magnetic anisotropy in RFe<sub>11</sub>Ti and RFe<sub>11</sub>TiH

# Cristina Piquer<sup>1</sup>, Fernande Grandjean<sup>2</sup>, Olivier Isnard<sup>3,4</sup> and Gary J Long<sup>5</sup>

<sup>1</sup> Instituto de Ciencia de Materiales de Aragón–CSIC, Universidad de Zaragoza, E-50009 Zaragoza, Spain

<sup>2</sup> Department of Physics, B5, University of Liège, B-4000 Sart-Tilman, Belgium

<sup>3</sup> Laboratoire de Cristallographie, CNRS, associé à l'Université J. Fourier, BP 166X, F-38042 Grenoble Cedex, France

<sup>4</sup> Institut Universitaire de France, Maison des Universités, 103 Boulevard Saint-Michel, F-75005 Paris, Cedex, France

<sup>5</sup> Department of Chemistry, University of Missouri-Rolla, Rolla, MO 65409-0010, USA

E-mail: cpiquer@unizar.es, fgrandjean@ulg.ac.be, olivier.isnard@grenoble.cnrs.fr and glong@umr.edu

Received 21 July 2005 Published 9 December 2005 Online at stacks.iop.org/JPhysCM/18/221

#### Abstract

A phenomenological model based on the interactions between the crystal field and the 3d-4f exchange interactions has been developed to explain the zero-kelvin magnetic anisotropy of the RFe<sub>11</sub>Ti compounds and their hydrides, RFe<sub>11</sub>TiH, where R is a rare-earth element. In most cases, this model also predicts the existence of a spin reorientation either in the RFe<sub>11</sub>Ti or the RFe<sub>11</sub>TiH compounds. A more advanced model, that takes into account the temperature dependence of the anisotropy coefficient, expressed in terms of generalized Brillouin functions, has also been developed and used to predict the spin-reorientation temperatures of several of the compounds. A set of crystalline electric field parameters for the RFe<sub>11</sub>Ti and  $RFe_{11}TiH$  compounds, with R = Pr, Nd, Sm, Tb, Dy, Ho and Er, has been obtained. With these parameters the magnetic phase diagrams of the RFe<sub>11</sub>Ti and RFe<sub>11</sub>TiH compounds have been reproduced. More specifically, the spin-reorientation temperatures and the temperature dependence of the magnetocrystalline anisotropy are correctly predicted when the higher-order terms of the crystal field are included in the model. Further, changes in the magnetocrystalline anisotropy that take place upon hydrogenation have been explained by a substantial decrease in the first-order crystal field coefficient,  $A_{20}$ , accompanied by a smaller decrease of the third-order coefficient,  $A_{60}$ .  $ErFe_{11}TiH$  and NdFe\_{11}TiH exhibit a smaller decrease in their A<sub>nm</sub> parameters upon hydrogenation than do the remaining rare-earth compounds.

(Some figures in this article are in colour only in the electronic version)

0953-8984/06/010221+22\$30.00 © 2006 IOP Publishing Ltd Printed in the UK

#### 1. Introduction

The series of RFe<sub>11</sub>Ti compounds and their hydrides, RFe<sub>11</sub>TiH, where R is a rare-earth element, all of which crystallize [1, 2] in the ThMn<sub>12</sub> structure with the I4/mmm space group, exhibit a wide variety of magnetic behaviours [3–5]. For instance they exhibit different easy magnetization directions and spin-reorientation transitions, depending on both the rare-earth element and/or the presence of hydrogen [6–8]. Several authors have systematically been studying [9–21] the magnetic and Mössbauer spectral properties of the RFe<sub>11</sub>Ti and RFe<sub>11</sub>TiH compounds, where R is Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er and Lu, between 4.2 and 295 K.

The unit-cell volumes and some of the magnetic properties [10, 11, 14–17, 20, 22, 23] of the RFe<sub>11</sub>Ti and RFe<sub>11</sub>TiH compounds are summarized in table 1. The insertion of hydrogen into RFe<sub>11</sub>Ti to form RFe<sub>11</sub>TiH produces a significant increase in both the Curie temperature,  $T_c$ , and the saturation magnetization,  $M_s$ . The presence of interstitial hydrogen also induces significant changes in the magnetocrystalline anisotropy [6, 8, 10, 19, 22, 24–26] of the parent compound. The easy magnetization direction in the RFe<sub>11</sub>Ti and RFe<sub>11</sub>TiH compounds at 4.2 and 295 K are also given in table 1. The Mössbauer spectra have all been consistently analysed with a model that considers both the easy magnetization direction and the distribution of titanium in the near-neighbour environment of the three crystallographically inequivalent iron sites in the compounds. The earlier, different, analysis [9] of the Mössbauer spectra of CeFe<sub>11</sub>Ti and CeFe<sub>11</sub>TiH is revised in a companion paper [18] to this paper. Extensive information has been obtained on both the magnetic anisotropy and the spin reorientations exhibited by these compounds. Hence, it is worthwhile to rationalize this extensive new information in terms of an internally consistent magnetic model.

In the rare-earth–iron intermetallic compounds the total magnetocrystalline anisotropy results from the contributions of both the rare-earth and iron sublattices. The iron sublattice contribution to the total magnetocrystalline anisotropy is always axial and generally dominates at high temperatures. The rare-earth sublattice contribution, which usually dominates at low temperatures, is essentially determined by both the crystalline electric field experienced by the rare-earth sublattice to the magnetic anisotropy may be different for each rare earth and may vary with temperature. A spin reorientation will occur when the balance of the iron and rare-earth sublattice contributions to the magnetic anisotropy changes with temperature. The insertion of hydrogen in rare-earth–iron intermetallic compounds usually has a dramatic effect on the macroscopic magnetocrystalline anisotropy. In particular, in the RFe<sub>11</sub>Ti compounds hydrogenation decreases the spin-reorientation temperature in NdFe<sub>11</sub>Ti and induces the appearance of a spin reorientation in going from HoFe<sub>11</sub>Ti to HoFe<sub>11</sub>TiH, see table 1.

Several authors [4, 23, 27–29] have modelled the interactions between the crystal field and the 3d–4f exchange in order to explain the magnetic anisotropies of specific  $RFe_{11}Ti$  and  $RFe_{11}TiH$  compounds. However, except for the work of Isnard [8], there has been no systematic study of the influence of the interstitial hydrogen on the macroscopic magnetocrystalline anisotropy.

Herein we present a detailed study of the macroscopic magnetocrystalline anisotropy of the  $RFe_{11}Ti$  and  $RFe_{11}TiH$  compounds and obtain a systematic and quantitative evaluation of the influence of hydrogenation upon the magnetic and crystal field interactions. To accomplish this, we have used, first, a phenomenological model for the magnetocrystalline anisotropy of the  $RFe_{11}Ti$  and  $RFe_{11}TiH$  compounds at zero kelvin, see section 2, and, second, a model which accounts for the temperature dependence of the magnetic anisotropy and the spin-reorientation transitions observed in these compounds, see section 3.1.

| Δ : | phenomenological | model for | the rare-earth  | contribution t | o magnetic | anisotrony |
|-----|------------------|-----------|-----------------|----------------|------------|------------|
| 11  | phenomenological | model for | the face cartin | contribution   | o magnetie | unsouopy   |

| Table 1. The crystallographic and magnetic properties of the RFe <sub>11</sub> Ti and RFe <sub>11</sub> TiH compounds. |                                         |                           |                           |                      |                      |                                                     |                                                 |                     |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------|---------------------------|----------------------|----------------------|-----------------------------------------------------|-------------------------------------------------|---------------------|
| Compound                                                                                                               | <i>V</i> (Å <sup>3</sup> ) <sup>a</sup> | <i>T</i> <sub>c</sub> (K) | <i>T</i> <sub>s</sub> (K) | EMD <sup>300 K</sup> | EMD <sup>4.2 K</sup> | $M_{ m s}^{ m 300~K}$<br>( $\mu_{ m B}/{ m f.u.}$ ) | $M_{ m s}^{5~ m K}$<br>$(\mu_{ m B}/{ m f.u.})$ | Ref.                |
| CeFe <sub>11</sub> Ti                                                                                                  | 348.5                                   | 487                       | _                         | Axial                | Axial                | 15.0                                                | 17.4                                            | [22]                |
| CeFe <sub>11</sub> TiH                                                                                                 | 352.5                                   | 542                       | _                         | Axial                | Axial                | 15.3                                                | 17.6                                            | [22]                |
| PrFe <sub>11</sub> Ti                                                                                                  | 355.6                                   | 547                       | _                         | Basal                | Basal                | 19.2                                                | 16.8                                            | [ <mark>16</mark> ] |
| PrFe <sub>11</sub> TiH                                                                                                 | 357.1                                   | 604                       | _                         | Basal                | Basal                | 20.5                                                | 19.3                                            | [ <mark>16</mark> ] |
| NdFe <sub>11</sub> Ti                                                                                                  | 352.4                                   | 551                       | 200                       | Axial                | Canted               | 20.1                                                | 21.9                                            | [15]                |
| NdFe <sub>11</sub> TiH                                                                                                 | 354.7                                   | 614                       | 125                       | Axial                | Basal                | 21.6                                                | 24.0                                            | [15]                |
| SmFe <sub>11</sub> Ti                                                                                                  | 350.8                                   | 591                       | _                         | Axial                | Axial                | 17.3                                                | 19.3                                            | [17]                |
| SmFe <sub>11</sub> TiH                                                                                                 | 353.4                                   | 634                       | _                         | Axial                | Axial                | 18.2                                                | 19.3                                            | [17]                |
| GdFe <sub>11</sub> Ti                                                                                                  | 349.2                                   | 621                       | _                         | Axial                | Axial                | 13.5                                                | 14.8                                            | [22]                |
| GdFe <sub>11</sub> TiH                                                                                                 | 351.8                                   | 652                       | —                         | Axial                | Axial                | 14.7                                                | 15.7                                            | [22]                |
| TbFe <sub>11</sub> Ti                                                                                                  | 347.3                                   | 578                       | 338                       | Basal                | Basal                | 11.7                                                | 10.5                                            | [14]                |
| TbFe <sub>11</sub> TiH                                                                                                 | 351.0                                   | 620                       | —                         | Basal                | Basal                | 12.2                                                | 11.3                                            | [14]                |
| DyFe <sub>11</sub> Ti                                                                                                  | 347.5                                   | 552                       | 100, 200                  | Axial                | Basal                | 12.0                                                | 10.0                                            | [23]                |
| DyFe <sub>11</sub> TiH                                                                                                 | 350.3                                   | 600                       | —                         | Basal                | Basal                | 12.9                                                | 10.9                                            | [23]                |
| HoFe <sub>11</sub> Ti                                                                                                  | 344.9                                   | 533                       | —                         | Axial                | Axial                | 14.0                                                | 10.1                                            | [11]                |
| HoFe <sub>11</sub> TiH                                                                                                 | 348.4                                   | 590                       | 150                       | Axial                | Canted               | 14.7                                                | 10.6                                            | [11]                |
| ErFe <sub>11</sub> Ti                                                                                                  | 344.1                                   | 518                       | 50                        | Axial                | Canted               | 12.9                                                | 9.8                                             | [ <mark>10</mark> ] |
| ErFe <sub>11</sub> TiH                                                                                                 | 347.6                                   | 574                       | 40                        | Axial                | Basal(?)             | 12.9                                                | 10.6                                            | [ <mark>10</mark> ] |
| LuFe <sub>11</sub> Ti                                                                                                  | 342.2                                   | 498                       | _                         | Axial                | Axial                | 15.2                                                | 16.0                                            | [17]                |
| LuFe <sub>11</sub> TiH                                                                                                 | 345.7                                   | 558                       | —                         | Axial                | Axial                | 15.3                                                | 17.2                                            | [17]                |

 $^{a}$  The unit-cell volume whose error is approximately  $\pm 1$  in the last digit.

# 2. Phenomenological model for the magnetocrystalline anisotropy at zero kelvin

The magnetic anisotropy energy of a rare-earth ion in the tetragonal symmetry observed for both the  $RFe_{11}Ti$  and  $RFe_{11}TiH$  compounds, may be described at zero kelvin by the phenomenological expression

$$E_{\rm R}^{a} = K_{\rm 1R} \sin^2 \theta + [K_{\rm 2R} + K_{\rm 2R}' \cos 4\phi] \sin^4 \theta + [K_{\rm 3R} + K_{\rm 3R}' \cos 4\phi] \sin^6 \theta, \tag{1}$$

where  $\theta$  and  $\phi$  are the angles between the magnetization and the tetragonal [001] and basal [100] axes, respectively; the remaining parameters are defined below. The relationship [30] between the anisotropy coefficients,  $K_{iR}$ , and the crystal field parameters,  $B_{nm}$ , are given by the expressions

$$K_{1R} = -(3/2)B_{20}\langle O_{20}\rangle - 5B_{40}\langle O_{40}\rangle - (21/2)B_{60}\langle O_{60}\rangle, \tag{2a}$$

$$K_{2R} = (35/8)B_{40}\langle O_{40}\rangle + (189/8)B_{60}\langle O_{60}\rangle,$$
(2b)

$$K_{3R} = -(231/16)B_{60}\langle O_{60}\rangle, \tag{2c}$$

$$K'_{2R} = (1/8)B_{44}\langle O_{40} \rangle + (5/8)B_{64}\langle O_{60} \rangle \tag{2d}$$

and

$$K'_{3R} = -(11/16)B_{64}\langle O_{60}\rangle, \qquad (2e)$$

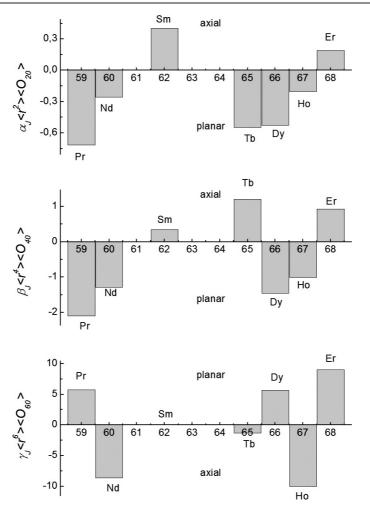
where  $\langle O_{nm} \rangle$  are the thermal averages of the Stevens operators [31] and  $B_{nm}$  are the crystal field parameters, which depend on the rare-earth ion, and are given by  $B_{nm} = \theta_n A_{nm} \langle r^n \rangle$ , where  $\theta_n$  are the single-ion Stevens coefficients,  $\theta_2 = \alpha_J$ ,  $\theta_4 = \beta_J$  and  $\theta_6 = \gamma_J$ ,  $A_{nm}$  are the crystal field coefficients and  $\langle r^n \rangle$  are the average values of the 4f electronic radial distributions. The easy magnetization direction is determined by the total magnetic anisotropy energy,

$$E_{\rm tot}^a = E_{\rm R}^a + K_{\rm 1Fe} \sin^2 \theta, \tag{3}$$

which has contributions from the rare earth and iron. From equations (1) to (3), one observes, for instance see [29], that a compound has an axial magnetization, i.e.,  $\theta = 0$ , if both of the following inequalities are fulfilled:

$$K_{1\rm Fe} + K_{1\rm R} > 0 \tag{4a}$$

and


$$K_{1\rm Fe} + K_{\rm eff,R} > 0, \tag{4b}$$

where  $K_{\text{eff},R}$  is defined by the expression

$$K_{\rm eff,R} = K_{1\rm R} + K_{2\rm R} + K_{3\rm R} - |K'_{2\rm R} + K'_{3\rm R}|.$$
(4c)

In many intermetallic rare-earth–transition metal compounds, the rare-earth contribution to the total magnetocrystalline anisotropy is described by using only the second-order crystal field term. However, in the RFe<sub>11</sub>Ti compounds and their hydrides, this approximation is inadequate because the second-order crystal field coefficient,  $A_{20}$ , is relatively small in the ThMn<sub>12</sub> structure. Hence the fourth-order and sixth-order crystal field terms play an important role and must be taken into account [3, 4, 8] in determining the magnetocrystalline anisotropy contribution from the rare-earth sublattice. For the RFe<sub>12-x</sub>M<sub>x</sub> compounds,  $A_{20}$  and  $A_{40}$  are known [20, 32–34] to be negative, whereas  $A_{60}$  is positive. Consequently, the first term in  $K_{1R}$  is negative and favours an axial anisotropy contribution from the rare earths with  $\alpha_J > 0$ , i.e., for Fr and Sm, whereas it is positive and favours a basal contribution from the rare earths with  $\alpha_J < 0$ , i.e., for Pr, Nd, Tb, Dy and Ho. Similarly, the second term in  $K_{1R}$  gives an axial contribution when  $\beta_J > 0$ , i.e., for Er, Tb and Sm, and the third term of  $K_{1R}$  gives an axial contribution when  $\gamma_J < 0$ , i.e., for Nd, Ho and Tb.

The different terms in equations (2) and (4) can easily be calculated at zero kelvin if the  $B_{nm}$  parameters are known. The values of  $\theta_n$ ,  $\langle r^n \rangle$  and  $\langle O_{nm} \rangle$  at zero kelvin are tabulated in the literature [35, 36]. Figure 1 shows the product  $\theta_n \langle r^n \rangle \langle O_{nm} \rangle$  at zero kelvin as a function of the atomic number of the rare earth and will be helpful in the following discussion. In contrast, unfortunately, there is an important variation in the literature values of the  $A_{nm}$  parameters, a variation that results from the different approximations used by different authors and may also come from differing stoichiometry of the RFe<sub>11</sub>Ti compounds under study. We believe that the most reliable method for determining the  $A_{nm}$  parameters of a given compound is from the fit of the single-crystal magnetization curves with the mean field approximation including exchange and crystal field interactions, see [27, 28, 37]. Unfortunately, to the best of our knowledge, a relevant set of crystal field parameters has been reported [27, 28] using this method only for DyFe<sub>11</sub>Ti, HoFe<sub>11</sub>Ti and TbFe<sub>11</sub>Ti. From the single-crystal magnetization analysis of DyFe<sub>11</sub>Ti, Hu *et al* [28] have obtained  $A_{20} = -32.3 \text{ K}a_0^{-2}$ ,  $A_{40} = -12.4 \text{ K}a_0^{-4}$ ,  $A_{60} = 2.56 \text{ K}a_0^{-6}$ ,  $A_{44} = 118 \text{ K}a_0^{-4}$  and  $A_{64} = 0.64 \text{ K}a_0^{-6}$ , where  $a_0$  is the Bohr radius. Abadia *et al* [27] have obtained  $A_{20} = -20.5 \text{ K}a_0^{-2}$ ,  $A_{40} = -11.1 \text{ K}a_0^{-4}$ ,  $A_{60} = 5.02 \text{ K}a_0^{-6}$ ,  $A_{44} = -153.2 \text{ K}a_0^{-4}$  and  $A_{64} = -0.81 \text{ K}a_0^{-6}$  from the single-crystal magnetization analysis of HoFe<sub>11</sub>Ti. Although the crystal field coefficients obtained for HoFe<sub>11</sub>Ti [27] and for  $DyFe_{11}Ti$  [28] are similar, the  $A_{nm}$  coefficients obtained for  $DyFe_{11}Ti$  by Hu et al [28] cannot explain [29] the spin-reorientation transition observed in TbFe<sub>11</sub>Ti and TbFe<sub>11.35</sub>Nb<sub>0.65</sub>. A more reliable set of crystal field parameters, very different from those reported by Hu et al [28] are the values obtained for TbFe<sub>11</sub>Ti by Abadia *et al* [27] of  $A_{20} = -52.5 \text{ K}a_0^{-2}$ ,  $A_{40} = -0.27 \text{ K}a_0^{-4}, A_{60} = 0.021 \text{ K}a_0^{-6}, A_{44} = -0.0087 \text{ K}a_0^{-4} \text{ and } A_{64} = -8.9 \text{ K}a_0^{-6},$ which yield a satisfactory explanation of the observed experimental magnetization. The origin of the discrepancy between the different authors is not clear. According to Abadia et al [27], an anomalous value of  $A_{20}$  has also been obtained for Pr and Yb in their  $R_2$ Fe<sub>14</sub>B compounds



**Figure 1.** The product  $\theta_n \langle r^n \rangle \langle O_{nm} \rangle$ , in K, expected at zero kelvin as a function of the atomic number of the rare earth.

and the anomaly has been attributed to an incipient rare-earth valence instability. For the RFe<sub>11</sub>TiH compounds, a relevant set of crystal field parameters obtained from single-crystal magnetization measurements has been reported [23] only for HoFe<sub>11</sub>TiH as  $A_{20} = -118 \text{ K}a_0^{-2}$ ,  $A_{40} = -8.6 \text{ K}a_0^{-4}$ ,  $A_{60} = 1.4 \text{ K}a_0^{-6}$ ,  $A_{44} = -200 \text{ K}a_0^{-4}$  and  $A_{64} = -0.85 \text{ K}a_0^{-6}$ . Because for the remaining rare-earth elements, there are only less reliable reports of

Because for the remaining rare-earth elements, there are only less reliable reports of  $A_{nm}$  parameters obtained from other methods [3, 4, 38–41] than from the fit of single-crystal magnetization curves, the usual procedure [28, 29] is to use the  $A_{nm}$  parameters obtained for other RFe<sub>11</sub>Ti compounds to predict the magnetization direction at zero kelvin. Herein, a similar approach has been used for the RFe<sub>11</sub>TiH compounds. For TbFe<sub>11</sub>Ti, the crystal field parameters obtained by Abadia *et al* [27] have been used and, for the remaining RFe<sub>11</sub>Ti compounds, the crystal field parameters reported by Hu *et al* [28] for DyFe<sub>11</sub>Ti or by Abadia *et al* [27] for HoFe<sub>11</sub>Ti have been initially used. References [27] and [28] use different sign conventions for the  $A_{44}$  and  $A_{64}$  parameters, however, the sign is irrelevant for the present analysis because  $|K'_{2R} + K'_{3R}|$  is used in equation (4*c*). For HoFe<sub>11</sub>TiH, the set of crystal

field parameters reported by Nikitin *et al* [23] has been used whereas, for the remaining RFe<sub>11</sub>TiH compounds, these parameters have been scaled to predict the stable magnetic phase at zero kelvin. The  $B_{nm} \langle O_{nm} \rangle$  crystal field terms at zero kelvin for the RFe<sub>11</sub>Ti and RFe<sub>11</sub>TiH compounds, obtained from the  $A_{nm}$  parameters reported in the indicated reference, are given in table 2, a table which also gives the corresponding anisotropy coefficients at zero kelvin, obtained using equations (2*a*)–(2*e*).

In the following discussion, for the RFe<sub>11</sub>Ti compounds,  $K_{1Fe}(0)$  is 24 K/f.u. as is observed for YFe<sub>11</sub>Ti [27] and for the RFe<sub>11</sub>TiH compounds,  $K_{1Fe}(0)$  is 25.8 K/f.u. as is observed for YFe<sub>11</sub>TiH [42].

YFe<sub>11</sub>Ti, CeFe<sub>11</sub>Ti, GdFe<sub>11</sub>Ti and LuFe<sub>11</sub>Ti and their hydrides exhibit [17, 20, 22] an axial magnetocrystalline anisotropy at all temperatures. Because both yttrium and lutetium are non-magnetic rare earths, only the iron sublattice contributes to the total magnetocrystalline anisotropy of YFe<sub>11</sub>Ti and LuFe<sub>11</sub>Ti and their hydrides. In CeFe<sub>11</sub>Ti the magnetic anisotropy is dominated by the iron sublattice contribution. The spherically symmetric 4f<sup>7</sup> electronic configuration of the gadolinium ion makes no orbital contribution to its moment and thus there is no crystal field interaction. As a consequence, the magnetic anisotropy of GdFe<sub>11</sub>Ti and GdFe<sub>11</sub>TiH is also dominated by the iron sublattice [22].

# 2.1. Application to the RFe<sub>11</sub>Ti compounds

To predict the stable magnetic phase at zero kelvin of the RFe<sub>11</sub>Ti compounds we began our analysis using the  $A_{nm}$  parameters reported by Abadia *et al* [27]. By using  $K_{1Fe}$  equal to 24.0 K/f.u. [27] and the parameters given in table 2, the sum of the iron and rare-earth anisotropy parameters, as given by the left members of the inequalities (4*a*) and (4*b*), are calculated and given in table 3. As is shown in this table, when R is Pr, Tb, Dy and Er, negative values for  $K_{1Fe} + K_{1R}$  and  $K_{1Fe} + K_{eff,R}$  are obtained. Hence, the  $A_{nm}$  parameters reported by Abadia *et al* [27] predict that these compounds are not axial at zero kelvin, in agreement with the experimental results, see table 1. When R is Sm and Ho, the  $A_{nm}$  parameters reported in [27] give positive values of  $K_{1Fe} + K_{1R}$  and  $K_{1Fe} + K_{eff,R}$ , and indicate that these compounds are axial at zero kelvin, again in agreement with the experimental observations, see table 1.

The only exception is NdFe<sub>11</sub>Ti. In this case, the  $A_{nm}$  coefficients obtained by Abadia *et al* [27] for HoFe<sub>11</sub>Ti yield positive values of  $K_{1Fe} + K_{1R}$  and  $K_{1Fe} + K_{eff,R}$ , and, hence, predict that NdFe<sub>11</sub>Ti should exhibit an axial anisotropy at zero kelvin, in disagreement with the experimental observation, see table 1. The  $A_{nm}$  values obtained [28] for DyFe<sub>11</sub>Ti lead to similar positive values of  $K_{1Fe} + K_{1R}$  and  $K_{1Fe} + K_{eff,R}$ , see table 3. This disagreement is quite surprising because Hu *et al* [29] claim that they can predict the spin-reorientation transition and the canting angle with these parameters through a calculation of the energy surface. Another set of  $A_{nm}$  parameters has been obtained for NdFe<sub>11</sub>Ti by Kou *et al* [4] from magnetic measurements on polycrystalline samples,  $A_{20} = -40.4 \text{ K}a_0^{-2}$ ,  $A_{40} = -6.9 \text{ K}a_0^{-4}$ ,  $A_{60} = 0.3 \text{ K}a_0^{-6}$ ,  $A_{44} = 36.6 \text{ K}a_0^{-4}$  and  $A_{64} = 0 \text{ K}a_0^{-6}$ . With these parameters,  $K_{1Fe} + K_{1R} = -8.62 \text{ K/f.u.} < 0$  and  $K_{1Fe} + K_{eff,R} = 0.39 \text{ K/f.u.} > 0$ . Hence, this set of crystal field parameters predicts that NdFe<sub>11</sub>Ti is not axial at zero kelvin, in agreement with the experimental observations.

All these results can be understood by analysing the relative values of the  $\theta_n$  and  $A_{nm}$  parameters. For praseodymium,  $\alpha_J$  and  $\beta_J$  are negative, whereas  $\gamma_J$  is positive, see figure 1. Hence, the three terms of  $K_{1R}$  in equation (2*a*) favour a basal rare-earth easy magnetization direction. PrFe<sub>11</sub>Ti is the only compound in the RFe<sub>11</sub>Ti series in which the rare-earth magnetocrystalline anisotropy dominates at all temperatures below its Curie temperature, a situation quite unexpected because the rare-earth contribution to the total magnetocrystalline

|                                    | magnetocryst                    | alline anisotrop                | by at zero kelvir               | i. (Note: the pai               | rameters have t                 | been calculate | ed using the A  | <sub>nm</sub> paramete | rs reported        | in the indi | cated referen   | ice.) |
|------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------|-----------------|------------------------|--------------------|-------------|-----------------|-------|
| Compound                           | $B_{20} \langle O_{20} \rangle$ | $B_{40} \langle O_{40} \rangle$ | $B_{60} \langle O_{60} \rangle$ | $B_{44} \langle O_{40} \rangle$ | $B_{64} \langle O_{60} \rangle$ | $K_{1R}$       | K <sub>2R</sub> | K <sub>3R</sub>        | $K'_{2\mathrm{R}}$ | $K'_{3R}$   | $K_{\rm eff,R}$ | Ref.  |
| PrFe <sub>11</sub> Ti              | 14.66                           | 23.26                           | 28.88                           | 321.11                          | -4.66                           | -441.6         | 784.2           | -417.0                 | 37.2               | 3.2         | -114.9          | [27]  |
| PrFe <sub>11</sub> TiH             | 84.38                           | 18.02                           | 8.06                            | 419.2                           | -4.89                           | -301.1         | 269.2           | -116.3                 | 49.3               | 3.4         | -201.1          | [23]  |
| NdFe <sub>11</sub> Ti              | 5.28                            | 14.22                           | -43.34                          | 196.25                          | 6.99                            | 376.0          | -961.6          | 625.7                  | 28.9               | -4.8        | 16.0            | [27]  |
| NdFe <sub>11</sub> Ti              | 8.33                            | 15.88                           | -22.10                          | -151.15                         | -5.52                           | 140.14         | -452.6          | 319.0                  | -22.3              | 3.8         | -11.9           | [28]  |
| NdFe <sub>11</sub> Ti <sup>a</sup> | 10.41                           | 8.84                            | -2.60                           | -46.88                          | 0                               | -32.62         | -22.5           | 37.3                   | -5.8               | 0           | -23.6           | [4]   |
| NdFe <sub>11</sub> TiH             | 59.94                           | 6.84                            | -0.71                           | -60.95                          | 0                               | -116.5         | 12.8            | 10.5                   | -7.6               | 0           | -100.9          | [23]  |
| SmFe <sub>11</sub> Ti              | -8.24                           | -3.76                           | 0                               | -51.93                          | 0                               | 31.2           | -16.5           | 0                      | -6.5               | 0           | 8.2             | [27]  |
| SmFe <sub>11</sub> TiH             | -47.45                          | -2.95                           | 0                               | -67.8                           | 0                               | 85.7           | -12.7           | 0                      | -8.5               | 0           | 64.5            | [23]  |
| TbFe <sub>11</sub> Ti              | 28.77                           | -0.324                          | -0.027                          | -0.010                          | 11.37                           | -41.2          | -2.0            | 0.4                    | 7.10               | -7.8        | -43.6           | [27]  |
| TbFe <sub>11</sub> TiH             | 165.60                          | -0.25                           | -0.007                          | -0.013                          | 11.93                           | -246.9         | -1.28           | 0.11                   | 7.5                | -8.2        | -248.8          | [23]  |
| DyFe <sub>11</sub> Ti              | 10.80                           | 16.19                           | 28.31                           | 223.52                          | -4.56                           | -394.5         | 739.7           | -408.8                 | 25.1               | 3.1         | -91.7           | [27]  |
| DyFe <sub>11</sub> TiH             | 62.20                           | 12.54                           | 7.89                            | 291.8                           | -4.79                           | -238.9         | 241.4           | -114.0                 | 33.5               | 3.3         | -148.3          | [23]  |
| HoFe <sub>11</sub> Ti              | 4.12                            | 11.13                           | -50.35                          | 153.66                          | 8.12                            | 466.9          | -1140.9         | 727.0                  | 24.3               | -5.6        | 34.2            | [27]  |
| HoFe <sub>11</sub> TiH             | 23.74                           | 8.62                            | -14.04                          | 206.6                           | 8.52                            | 68.7           | -294.0          | 202.7                  | 30.4               | -5.9        | -47.1           | [23]  |
| ErFe <sub>11</sub> Ti              | -3.94                           | -10.25                          | 45.08                           | -141.55                         | -7.27                           | -416.2         | 1020.2          | -650.9                 | -22.2              | 5.0         | -64.1           | [27]  |
| ErFe <sub>11</sub> TiH             | -22.7                           | -7.94                           | 12.57                           | -184.8                          | -7.63                           | -58.2          | 262.3           | -181.5                 | -27.9              | 5.2         | -0.12           | [23]  |

**Table 2.**  $B_{nm}(O_{nm})$ , in K, and the anisotropy coefficients, in K/f.u., for RFe<sub>11</sub>Ti and RFe<sub>11</sub>TiH used in the phenomenological model for the magnetocrystalline anisotropy at zero kelvin. (Note: the parameters have been calculated using the  $A_{nm}$  parameters reported in the indicated reference.)

<sup>a</sup> Final set of parameters that correctly predict the stable magnetic phase at zero kelvin.

| phenomenological model for the magnetocrystalline anisotropy at zero kelvin.<br>$K_{1Fe} + K_{1R}$ $K_{1Fe} + K_{eff,R}$ $K_{1Fe} + K_{1R}$ $K_{1Fe} + K_{eff,R}$ |          |          |      |                        |          |          |          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------|------------------------|----------|----------|----------|--|--|
| Compound                                                                                                                                                          | (K/f.u.) | (K/f.u.) | Ref. | Compound               | (K/f.u.) | (K/f.u.) | Ref.     |  |  |
| PrFe <sub>11</sub> Ti                                                                                                                                             | -417.6   | -90.8    | [27] | PrFe <sub>11</sub> TiH | -275.3   | -175.3   | [23]     |  |  |
| NdFe <sub>11</sub> Ti                                                                                                                                             | 400.0    | 40.0     | [27] | NdFe <sub>11</sub> TiH | -90.7    | -75.9    | [4, 23]  |  |  |
|                                                                                                                                                                   | 164.1    | 12.04    | [28] |                        |          |          |          |  |  |
|                                                                                                                                                                   | -8.62    | 0.39     | [4]  |                        |          |          |          |  |  |
| SmFe <sub>11</sub> Ti                                                                                                                                             | 55.2     | 33.2     | [27] | SmFe <sub>11</sub> TiH | 111.5    | 90.3     | [23]     |  |  |
| TbFe <sub>11</sub> Ti                                                                                                                                             | -17.2    | -19.6    | [27] | TbFe <sub>11</sub> TiH | -221.1   | -223.0   | [23, 27] |  |  |
| DyFe <sub>11</sub> Ti                                                                                                                                             | -370.5   | -67.7    | [27] | DyFe <sub>11</sub> TiH | -213.1   | -122.5   | [23]     |  |  |
| HoFe <sub>11</sub> Ti                                                                                                                                             | 490.9    | 58.2     | [27] | HoFe <sub>11</sub> TiH | 94.5     | -21.3    | [23]     |  |  |
| ErFe <sub>11</sub> Ti                                                                                                                                             | -392.2   | -40.1    | [27] | ErFe <sub>11</sub> TiH | -32.4    | 25.7     | [23]     |  |  |

**Table 3.** The  $K_{1Fe} + K_{1R}$  and  $K_{1Fe} + K_{eff,R}$  terms for RFe<sub>11</sub>Ti and RFe<sub>11</sub>TiH used in the phenomenological model for the magnetocrystalline anisotropy at zero kelvin.

anisotropy decreases much faster with increasing temperature than does the iron contribution. This predominance results because the three  $\theta_n$  single-ion coefficients, and consequently, the  $\theta_n \langle r^n \rangle \langle O_{nm} \rangle$  and  $B_{nm} \langle O_{nm} \rangle$  terms, for praseodymium have exceptionally large absolute values, see figure 1 and table 2. The large values of  $B_{nm} \langle O_{nm} \rangle$  may explain why the rare-earth contribution to the total magnetocrystalline anisotropy overwhelms the axial contribution of the iron sublattice at all temperatures below the Curie temperature.

For samarium,  $\alpha_J$  and  $\beta_J$  are positive and favour an axial contribution to the net magnetic anisotropy. Hence, an axial magnetization and no spin-reorientation transition are predicted, in agreement with the earlier results reported by Zhang and Wallace [6] and Kaneko *et al* [43]. Similar predictions are made from the  $A_{nm}$  parameters reported by Hu *et al* [28].

For terbium, which has the most negative  $\alpha_J$  coefficient after praseodymium, only  $\alpha_J$  favours basal anisotropy, see figure 1. Consequently, an important basal contribution arising from the terbium sublattice is expected and, indeed, the  $B_{20}\langle O_{20}\rangle$  value obtained for TbFe<sub>11</sub>Ti is larger than the values obtained for any of the other RFe<sub>11</sub>Ti compounds, see table 2. This large value of  $B_{20}\langle O_{20}\rangle$  may explain why the rare-earth contribution to the total magnetocrystalline anisotropy overwhelms [4] the axial contribution below 338 K.

For dysprosium,  $\alpha_J$  and  $\beta_J$  are negative and  $\gamma_J$  is positive and, thus, the three terms of  $K_{1R}$  favour a basal orientation of the rare-earth magnetization. The anisotropy of dysprosium is very similar to that of praseodymium, i.e., the three terms of  $K_{1R}$  favour basal anisotropy, but in DyFe<sub>11</sub>Ti the  $B_{nm} \langle O_{nm} \rangle$  terms are smaller, see table 2. As a consequence, the basal contribution from dysprosium cannot overwhelm the axial iron contribution at all temperatures and a spin-reorientation transition occurs in DyFe<sub>11</sub>Ti.

HoFe<sub>11</sub>Ti unexpectedly exhibits [3, 11, 45, 46] an axial easy magnetization direction at all temperatures below its Curie temperature of 533 K, because, for holmium,  $\alpha_J$  and  $\beta_J$ are negative and hence give basal contributions to the total magnetocrystalline anisotropy, see figure 1. The  $B_{nm}\langle O_{nm}\rangle$  calculated from the  $A_{nm}$  parameters reported by Abadia *et al* [27], see table 2, show that the sixth-order crystal field term strongly dominates at zero kelvin and is responsible for the large positive values of  $K_{1R}$  and  $K_{eff,R}$ . In other words, HoFe<sub>11</sub>Ti exhibits an axial magnetic anisotropy because *both* the iron and rare-earth sublattices favour axial anisotropy. The importance of the sixth-order crystal field term was not recognized in earlier work [28] in which the absence of a spin-reorientation transition was ascribed to the dominance of the axial iron anisotropy over the basal holmium anisotropy at all temperatures.

For erbium,  $\alpha_J$  and  $\beta_J$  are positive and both the second- and fourth-order crystal field terms favour an axial magnetic anisotropy, see figure 1. However, in ErFe<sub>11</sub>Ti the  $B_{60}\langle O_{60}\rangle$ 

229

term is exceptionally large and favours basal anisotropy, see table 2. Consequently, in  $ErFe_{11}Ti$  the observed [10, 24] spin-reorientation transition is determined by the sixth-order crystal field term. It is remarkable that, in the cases of Ho and Er, at low temperature, the sixth-order crystal field term dominates but has an opposite sign and, as a consequence,  $HoFe_{11}Ti$  is axial and  $ErFe_{11}Ti$  is canted below 50 K.

NdFe<sub>11</sub>Ti undergoes [3, 4, 15, 39] a second-order spin-reorientation transition at 200 K. This transition is not surprising because for neodymium  $\alpha_J$  and  $\beta_J$  are negative, see figure 1, and favour a basal magnetic anisotropy. However, both the parameters reported for HoFe<sub>11</sub>Ti [27] and DyFe<sub>11</sub>Ti [28] predict that NdFe<sub>11</sub>Ti should exhibit an axial anisotropy at zero kelvin, in disagreement with the experimental observation. The difference between the predictions from the parameters of Abadia *et al* [27] or Hu *et al* [28] and of Kou *et al* [4] result from the very large  $\gamma_J \langle r^6 \rangle \langle O_{60} \rangle$  term for NdFe<sub>11</sub>Ti, see figure 1. By using the  $A_{nm}$  parameters from [27] or [28], the  $B_{60} \langle O_{60} \rangle$  term, i.e., the axial contribution of the neodymium, is exceptionally large for NdFe<sub>11</sub>Ti, see table 2. In contrast, Kou *et al* [4] have reported an  $A_{60}$  parameter which is *an order of magnitude* lower than those reported by Abadia *et al* [27] or by Hu *et al* [28]. Consequently, the axial contribution to the net rare-earth anisotropy is greatly reduced, see table 2, and these parameters predict that the NdFe<sub>11</sub>Ti is not in an axial magnetic phase at zero kelvin.

Summarizing, the  $A_{nm}$  parameters reported for HoFe<sub>11</sub>Ti [27] and DyFe<sub>11</sub>Ti [28] correctly predict the stable magnetic phase at zero kelvin for the RFe<sub>11</sub>Ti compounds when R is Pr, Sm, Dy, Ho and Er. As has previously been noted, these parameters do not predict the stable magnetic phase at zero kelvin for TbFe<sub>11</sub>Ti [28, 29]. In this case, the correct magnetic phase at zero kelvin is correctly obtained by using the  $A_{nm}$  parameters reported by Abadia *et al* [27]. The most surprising result concerns NdFe<sub>11</sub>Ti for which neither of the previously reported [27, 28]  $A_{nm}$  parameters predict the correct magnetic phase at zero kelvin. In this case, the magnetic phase at zero kelvin can be obtained by using the crystal field parameters reported by Kou *et al* [4], parameters which give a significantly reduced axial contribution to the net rare-earth anisotropy.

# 2.2. Application to the RFe<sub>11</sub>TiH compounds

It is well established from gadolinium-155 Mössbauer spectral measurements [20] that the  $A_{20}$  parameter becomes more negative in going from GdFe<sub>11</sub>Ti to GdFe<sub>11</sub>TiH. Hence, to a first approximation, there is an increase in the rare-earth contribution to the magnetic anisotropy, an increase that has been confirmed by high-field magnetization measurements [19, 22, 24] on SmFe<sub>11</sub>Ti and ErFe<sub>11</sub>Ti.

For the RFe<sub>11</sub>TiH compounds, where R is Pr, Sm, Dy, Ho and Er, we use the  $A_{nm}$  parameters reported by Nikitin *et al* [23] for HoFe<sub>11</sub>TiH to predict the stable magnetic phase at zero kelvin. For TbFe<sub>11</sub>TiH and NdFe<sub>11</sub>TiH the  $A_{nm}$  parameters are assumed to vary upon hydride formation in a fashion similar to the variation observed for HoFe<sub>11</sub>Ti. In going from HoFe<sub>11</sub>Ti to HoFe<sub>11</sub>TiH, the relative variations,  $\Delta_{20}$ ,  $\Delta_{40}$ ,  $\Delta_{60}$ ,  $\Delta_{44}$  and  $\Delta_{64}$ , of  $A_{20}$ ,  $A_{40}$ ,  $A_{60}$ ,  $A_{44}$  and  $A_{64}$ , are 4.75, -0.22, -0.72, 0.30 and 0.05, respectively. By assuming that  $A_{nm}(1) = A_{nm}(0) + \Delta_{nm}A_{nm}(0)$ , where  $A_{nm}(1)$  and  $A_{nm}(0)$  are the parameters for the RFe<sub>11</sub>TiH and RFe<sub>11</sub>Ti, respectively, a set of  $A_{nm}$  parameters is easily obtained for the RFe<sub>11</sub>TiH compounds. The corresponding  $B_{nm}\langle O_{nm}\rangle$  parameters and the phenomenological anisotropy coefficients,  $K_{iR}$ , are given in table 2. As may be observed in this table, upon hydride formation, there is both an important increase in the absolute value of  $A_{20}$ , or equivalently in  $B_{20}\langle O_{20}\rangle$ , and a significant concomitant reduction in the absolute value of the sixth-order term,  $B_{60}\langle O_{60}\rangle$ .

By using  $K_{1\text{Fe}}$  equal to 25.8 K/f.u. [42] and the parameters given in table 2, the anisotropy parameters given by equations (4*a*) and (4*b*) have been obtained and are given in table 3. As may be seen in this table, SmFe<sub>11</sub>TiH is predicted to be axial [6, 19] and the RFe<sub>11</sub>TiH compounds, where R is Pr, Nd, Tb, Dy, Ho and Er, are predicted to be non-axial at zero kelvin, in agreement with experimental results [8, 10, 11, 13–16, 22, 47]. Hence, in the framework of the phenomenological model of the magnetocrystalline anisotropy, the variation upon hydrogenation of the crystal field parameters reported for HoFe<sub>11</sub>TiH can reproduce the stable magnetic phase of the RFe<sub>11</sub>TiH compounds at zero kelvin. Moreover, for the RFe<sub>11</sub>TiH compounds, where R is Pr, Sm, Tb, Dy and Ho, the experimentally observed hydrogen induced modifications of the magnetocrystalline anisotropy can be understood in terms of the observed variations in the  $A_{nm}$  parameters of HoFe<sub>11</sub>Ti. However the situation becomes more complex for the RFe<sub>11</sub>TiH compounds when R is Nd and Er, as will be discussed below.

In PrFe<sub>11</sub>TiH no change in the total magnetocrystalline anisotropy is observed upon hydrogenation, and the easy magnetization direction lies within the basal plane between 4.2 K and the Curie temperature [16]. Consequently, even though  $K_{1Fe}$  increases slightly upon hydrogenation and  $B_{60}\langle O_{60}\rangle$  decreases,  $B_{20}\langle O_{20}\rangle$  markedly increases and, as a consequence, the rare-earth contribution to the anisotropy remains dominant at all temperatures.

For TbFe<sub>11</sub>Ti, DyFe<sub>11</sub>Ti and HoFe<sub>11</sub>Ti, in agreement with previous observations on other rare earths, we have experimentally observed [8, 11, 13, 14] that hydrogenation reinforces the rare-earth contribution to the total magnetocrystalline anisotropy. As is shown in table 2 for TbFe<sub>11</sub>TiH, the  $B_{20}\langle O_{20}\rangle$  term, which gives a basal contribution to the rare-earth anisotropy, is larger than for the other RFe<sub>11</sub>TiH compounds. Further, the axial  $B_{40}\langle O_{40}\rangle$  and  $B_{60}\langle O_{60}\rangle$ contributions are negligible in  $TbFe_{11}TiH$ . Hence, it seems reasonable that in  $TbFe_{11}TiH$ the basal rare-earth contribution to the total magnetocrystalline anisotropy overwhelms the axial contribution of the iron sublattice at all temperatures below the Curie temperature of 620 K. The behaviour is similar for DyFe<sub>11</sub>TiH in which the observed increase in the basal  $B_{20}\langle O_{20}\rangle$  term enhances the dysprosium magnetic anisotropy which then dominates that of iron below the Curie temperature of 600 K. In HoFe<sub>11</sub>Ti the most remarkable change upon hydrogenation is the less negative axial  $B_{60}(O_{60})$  contribution. Indeed, in HoFe<sub>11</sub>Ti the sixthorder term dominates at zero kelvin and the net contribution of the holmium sublattice favours axial magnetocrystalline anisotropy. Because in HoFe<sub>11</sub>TiH the  $B_{60}\langle O_{60}\rangle$  axial contribution is significantly smaller, see table 2, the basal  $B_{20}\langle O_{20}\rangle$  and  $B_{40}\langle O_{40}\rangle$  contributions can dominate at low temperatures and a spin-reorientation transition [21, 48] occurs at 150 K.

For ErFe<sub>11</sub>TiH and NdFe<sub>11</sub>TiH the situation is more complex because, in these compounds, the hydrogen induced modifications of the magnetocrystalline anisotropy cannot be explained in terms of the changes in the  $A_{nm}$  parameters reported [23] for HoFe<sub>11</sub>Ti. In ErFe<sub>11</sub>Ti the spinreorientation transition is driven by the sixth-order term, which is exceptionally large in this compound. After hydrogenation  $B_{60}(O_{60})$  is significantly reduced, whereas the axial  $B_{20}(O_{20})$ contribution becomes more negative, see table 2. Consequently, in ErFe<sub>11</sub>TiH a significant increase in the axial contribution of erbium to the total anisotropy would be expected. In contrast, only a small decrease in the spin-reorientation temperature, from 50 K in  $ErFe_{11}Ti$ to 40 K in  $ErFe_{11}TiH$ , is observed. The spin reorientations in  $ErFe_{11}Ti$  and  $ErFe_{11}TiH$  were investigated by several authors [3, 4, 47] and there is no agreement on their order or smoothness. The sharp peak in  $\chi_{ac}$  at 50 K for ErFe<sub>11</sub>Ti seems to be characteristic [49] of a first-order transition from an axial to a canted magnetic phase, whereas the step-like anomaly in  $\chi_{ac}$  for ErFe<sub>11</sub>TiH seems to be characteristic of a second-order transition in which the canting angle continuously changes with temperature. The completely different temperature dependence of  $\chi_{ac}$  for ErFe<sub>11</sub>Ti and ErFe<sub>11</sub>TiH may indicate that the spin-reorientation transitions are of a different order and further measurements are necessary to confirm the order of these transitions.

In going from  $NdFe_{11}Ti$  to  $NdFe_{11}TiH$ , the spin-reorientation temperature decreases from 200 to 125 K. The temperature dependence of  $\chi_{ac}$  is very similar in both NdFe<sub>11</sub>Ti and  $NdFe_{11}TiH$ , exhibiting a sharp peak at the transition temperature and indicate a first-order transition. Mössbauer spectra [15] provide more information about the canted magnetic phase. The nearly zero average quadrupole shift observed [15] in the iron-57 Mössbauer spectra of NdFe<sub>11</sub>Ti below 200 K indicates a canted magnetic phase with a canting angle close to 54.7°, a value that is in good agreement with the  $60^{\circ}$  value reported by Hu *et al* [28]. In a similar fashion, the average quadrupole shift of about  $-0.07 \text{ mm s}^{-1}$  observed [15] in NdFe<sub>11</sub>TiH below 125 K indicates a canting angle of between  $60^{\circ}$  and  $90^{\circ}$  or even a basal magnetic phase. Similarly, in NdFe<sub>10.5</sub>Mo<sub>0.5</sub> [50], after hydrogenation, the transition temperature decreases whereas the canting angle from the c-axis increases. In NdFe<sub>11</sub>Ti the spin-reorientation transition is driven by the second-order and fourth-order crystal field terms, terms which give a basal contribution to the total magnetic anisotropy. After hydrogenation the basal  $B_{20}(O_{20})$  contribution is greatly enhanced, whereas the axial  $B_{60}(O_{60})$  contribution is much less negative, see table 2. Consequently, a reinforcement of the neodymium basal contribution to the magnetocrystalline anisotropy and an increase in transition temperature would be expected in disagreement with experimental observation. In other words, although the variation of the  $A_{nm}$  parameters obtained for HoFe<sub>11</sub>TiH correctly predicts the stable magnetic phase at zero kelvin, it cannot explain the observed decrease in the spin-reorientation temperature upon hydrogenation. Consequently, at least for NdFe<sub>11</sub>Ti and ErFe<sub>11</sub>Ti and their hydrides, a more detailed analysis of the different contributions to the magnetocrystalline anisotropy is necessary.

#### 3. Temperature dependence of the anisotropy and the spin-reorientation transitions

The temperature dependence of the rare-earth contribution to the magnetocrystalline anisotropy can be calculated in a linear approximation of the crystal field, an approximation which is taken to be a perturbation of the strong 3d–4f exchange interaction. In this section, the model proposed by Kuz'min [49, 51] is applied to the RFe<sub>11</sub>Ti and RFe<sub>11</sub>TiH compounds. This model permits a calculation of the temperature dependence of the rare-earth phenomenological anisotropy coefficients in terms of the generalized Brillouin functions, as follows,

$$K_{1\rm R} = -3J^2 B_{20} B_J^2(x) - 40J^4 B_{40} B_J^4(x) - 168J^6 B_{60} B_J^6(x), \tag{5a}$$

$$K_{2\rm R} = 35J^4 B_{40} B_J^4(x) + 378J^6 B_{60} B_J^6(x), \tag{5b}$$

$$K_{3\rm R} = -231 J^6 B_{60} B_J^6(x), \tag{5c}$$

$$K'_{2\mathbf{R}} = J^4 B_{44} B^4_J(x) + 10 J^6 B_{64} B^6_J(x)$$
(5d)

and

$$K'_{3R} = -11J^6 B_{64} B^6_J(x), (5e)$$

where x is  $2J(g_J - 1)\mu_B B_{ex}/kT$  and  $B_J^n(x)$  are the generalized Brillouin functions defined by Kuz'min [51]. They are expressed in terms of elementary functions by

$$B_J^n(x) = P_n(\xi, \eta) - Q_n(\xi, \eta) \coth[((2J+1)/2J)x],$$

where  $\xi = (1/2J) \operatorname{coth}(x/2J)$ , and  $\eta = 1/2J$ , and  $P_n(\xi, \eta)$  and  $Q_n(\xi, \eta)$  are *n*th-order polynomials in  $\xi$  and  $\eta$ . The polynomials for n = 2, 4 and 6 are explicitly given in table I of [51]. The anisotropy energy can then be written as

$$F_{a} = K_{1} \sin^{2} \theta + [K_{2} + K_{2}' \cos 4\phi] \sin^{4} \theta + [K_{3} + K_{3}' \cos 4\phi] \sin^{6} \theta.$$
(6)

**Table 4.** The  $A_j$ ,  $B_j$  and  $C_j$  coefficients that give the temperature dependences of  $K_{1Fe}$  and  $K_{2Fe}$  for the RFe<sub>11</sub>Ti and RFe<sub>11</sub>TiH compounds.

| $A_1$  | $B_1$                                                                                                                           | $C_1$                                                                                                                                                                                                           | $A_2$                                                 | $B_2$                                                 | $C_2$                                                 |                                                       |
|--------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| -0.10  | 1.51                                                                                                                            | -0.39                                                                                                                                                                                                           | -0.78                                                 | 3.03                                                  | -1.23                                                 |                                                       |
| -0.17  | 1.63                                                                                                                            | -0.45                                                                                                                                                                                                           | -0.98                                                 | 2.10                                                  | -0.08                                                 |                                                       |
| -0.11  | 1.52                                                                                                                            | -0.40                                                                                                                                                                                                           | -0.81                                                 | 3.07                                                  | -1.25                                                 |                                                       |
| -0.20  | 1.67                                                                                                                            | -0.46                                                                                                                                                                                                           | -1.01                                                 | 2.13                                                  | -0.09                                                 |                                                       |
| -0.19  | 1.64                                                                                                                            | -0.44                                                                                                                                                                                                           | -0.96                                                 | 3.35                                                  | -1.38                                                 |                                                       |
| -0.22  | 1.70                                                                                                                            | -0.47                                                                                                                                                                                                           | -1.03                                                 | 2.16                                                  | -0.09                                                 |                                                       |
| -0.11  | 1.53                                                                                                                            | -0.40                                                                                                                                                                                                           | -0.81                                                 | 3.08                                                  | -1.26                                                 |                                                       |
| -0.16  | 1.62                                                                                                                            | -0.44                                                                                                                                                                                                           | -0.96                                                 | 2.08                                                  | -0.083                                                |                                                       |
| -0.061 | 1.45                                                                                                                            | -0.37                                                                                                                                                                                                           | -0.71                                                 | 2.89                                                  | -1.17                                                 |                                                       |
| -0.13  | 1.57                                                                                                                            | -0.43                                                                                                                                                                                                           | -0.93                                                 | 2.05                                                  | -0.081                                                |                                                       |
| -0.02  | 1.39                                                                                                                            | -0.35                                                                                                                                                                                                           | -0.63                                                 | 2.74                                                  | -1.11                                                 |                                                       |
| -0.09  | 1.51                                                                                                                            | -0.40                                                                                                                                                                                                           | -0.61                                                 | 1.39                                                  | -0.25                                                 |                                                       |
|        | $\begin{array}{c} -0.10 \\ -0.17 \\ -0.11 \\ -0.20 \\ -0.19 \\ -0.22 \\ -0.11 \\ -0.16 \\ -0.061 \\ -0.03 \\ -0.02 \end{array}$ | $\begin{array}{cccc} -0.10 & 1.51 \\ -0.17 & 1.63 \\ -0.11 & 1.52 \\ -0.20 & 1.67 \\ -0.19 & 1.64 \\ -0.22 & 1.70 \\ -0.11 & 1.53 \\ -0.16 & 1.62 \\ -0.061 & 1.45 \\ -0.13 & 1.57 \\ -0.02 & 1.39 \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

The easy magnetization direction coincides with the [001] direction or remains in the (110) or (110) planes, so that the angle  $\phi$  is equal to  $\pi/4 + n\pi/2$ , where n = 1, 2, 3 and 4, correspond to four possible domains. Therefore, for some applications, equation (6) can be rewritten as

$$F_{\rm a} = K_1 \sin^2 \theta + [K_2 - K_2'] \sin^4 \theta + [K_3 - K_3'] \sin^6 \theta.$$
<sup>(7)</sup>

The anisotropy coefficients entering into equation (7) consist of two parts, contributed by the iron and the rare-earth sublattices and can be written as

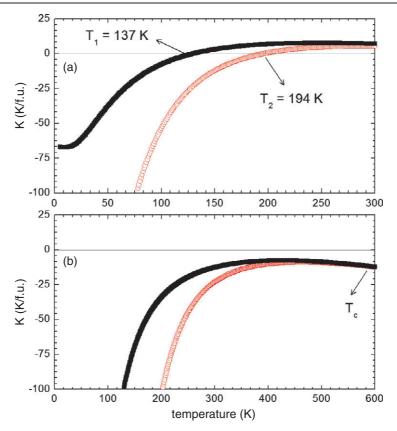
$$K_j = K_{j\rm Fe} + K_{j\rm R}.\tag{8}$$

The iron sublattice contribution to  $K_1$  and  $K_2$  are interpolated [51] as

$$K_{jFe}(T) = K_{jFe}(0)(A_{j} + B_{j}t + C_{j}t^{2})$$
(9)

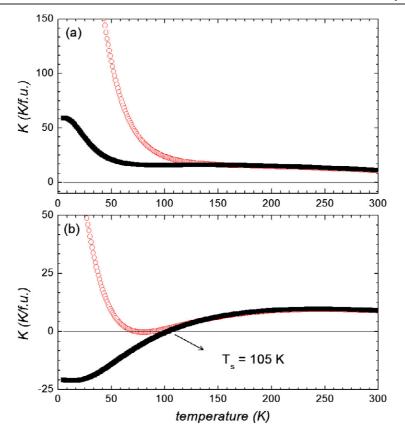
where  $t = 1 - T/T_c$  and, for the RFe<sub>11</sub>Ti compounds,  $K_{1Fe}(0) = 24.0$  K/f.u. and  $K_{2Fe}(0) = 0.44$  K/f.u., the values obtained [27] for YFe<sub>11</sub>Ti and for the RFe<sub>11</sub>TiH compounds,  $K_{1Fe}(0) = 25.8$  K/f.u. and  $K_{2Fe}(0) = 0.24$  K/f.u., the values obtained [42] for YFe<sub>11</sub>TiH. The  $A_j$ ,  $B_j$  and  $C_j$ , j = 1 and 2, coefficients must be determined for each compound as noted in [51], and are presented in table 4.

The necessary condition [51] for a spontaneous spin-reorientation transition from an axial to a canted magnetic phase is


$$K_1(T) = K_{1R}(T) + K_{1Fe}(T) = 0,$$
(10)

and for a spin-reorientation transition from an axial or conical to a basal magnetic phase is

$$K_{\rm eff}(T) = K_1(T) + K_2(T) + K_3(T) = K_{\rm 1R}(T) + K_{\rm 1Fe}(T) + (K_{\rm 2R}(T) - K'_{\rm 2R}(T)) + K_{\rm 2Fe}(T) + (K_{\rm 3R}(T) - K'_{\rm 3R}(T)) = 0.$$
(11)

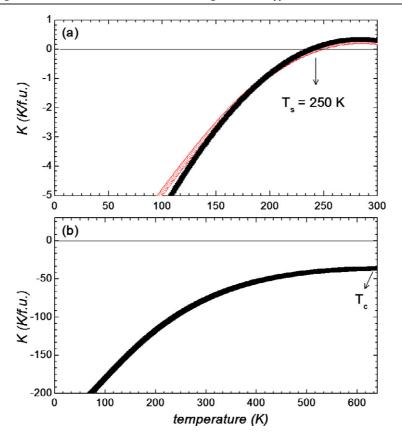

#### 3.1. Application to the RFe<sub>11</sub>Ti and RFe<sub>11</sub>TiH compounds

We begin our analysis of the temperature dependence of the rare-earth contribution to the magnetocrystalline anisotropy with the  $A_{nm}$  parameters that correctly reproduce the stable magnetic phase at zero kelvin. An exchange interaction [4, 27],  $\mu_B B_{ex}$ , of 300 K when R is Nd and Pr, of 126 K when R is Tb, of 121 K when R is Dy, and of 100 K when R is Ho and Er has been used. The temperature dependences of the iron sublattice anisotropy constants,  $K_{1Fe}$  and  $K_{2Fe}$ , are given by equation (9) with the coefficients given in table 4.



**Figure 2.** The temperature dependences of  $K_1 = K_{1R} + K_{1Fe}$ , open circles, and  $K_{eff}$ , solid squares, for DyFe<sub>11</sub>Ti, top, and DyFe<sub>11</sub>TiH, bottom. The  $A_{nm}$  coefficients for DyFe<sub>11</sub>Ti and DyFe<sub>11</sub>TiH have been obtained from [27] and [23], respectively.

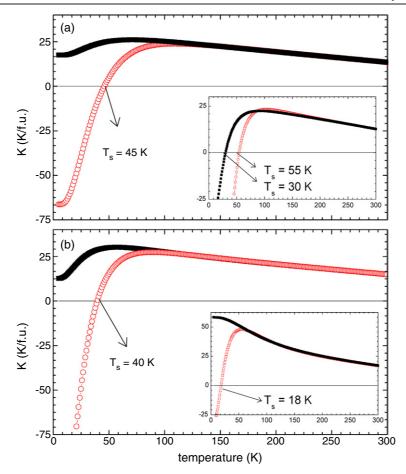
We have found that the  $A_{nm}$  parameters that correctly reproduce the stable magnetic phase at zero kelvin also reproduce the magnetic behaviour as a function of the temperature only when R is Dy, Ho and Tb. The temperature dependences of  $K_1$  and  $K_{eff}$  as defined in equations (10) and (11) are shown in figures 2-4, when R is Dy, Ho and Tb, respectively. For DyFe<sub>11</sub>Ti the model predicts a first spin-reorientation transition at 194 K from axial to canted and a second spin-reorientation transition at 137 K from canted to basal, predictions that are in reasonable agreement with experimental results [4, 13, 23, 44]. Furthermore, the model correctly predicts that DyFe<sub>11</sub>TiH adopts a basal magnetic phase at all temperatures below its Curie temperature of 600 K [8]. For HoFe<sub>11</sub>Ti the model predicts that the compound is axial between 4.2 K and its Curie temperature of 553 K, see figure 3, in agreement with the experimental results [4, 11, 21, 28, 48, 52]. For HoFe<sub>11</sub>TiH, the model predicts a spinreorientation transition from an axial to a canted magnetic phase at 105 K, a temperature somewhat smaller than the experimental value of 150 K [11, 48]. For TbFe<sub>11</sub>Ti both  $K_1$ and  $K_{\rm eff}$  are zero at 250 K, figure 4, indicating that a spin-reorientation transition from an axial to a basal magnetic phase occurs at this temperature, in reasonable agreement with the experimentally observed transition at 330 K [4, 14, 25, 41, 53]. Furthermore, the  $A_{nm}$ parameters reported for TbFe<sub>11</sub>TiH correctly predict [8, 14, 25] that this compound adopts a basal magnetic phase between 4.2 K and its Curie temperature of 620 K.




**Figure 3.** The temperature dependences of  $K_1 = K_{1R} + K_{1Fe}$ , open circles, and  $K_{eff}$ , solid squares, for HoFe<sub>11</sub>Ti, top, and HoFe<sub>11</sub>TiH, bottom. The  $A_{nm}$  coefficients for HoFe<sub>11</sub>Ti and HoFe<sub>11</sub>TiH have been obtained from [27] and [23], respectively.

For the rest of the compounds, the  $A_{nm}$  parameters that correctly reproduce the stable magnetic phase at zero kelvin do not reproduce the magnetic behaviour as a function of the temperature. This result is not unexpected for  $\text{ErFe}_{11}\text{TiH}$  and  $\text{NdFe}_{11}\text{TiH}$ , as we have discussed in section 2.2. Surprisingly, the  $A_{nm}$  parameters that correctly reproduce the stable magnetic phase at zero kelvin for  $\text{ErFe}_{11}\text{Ti}$  and  $\text{PrFe}_{11}\text{Ti}$  do not reproduce the temperature dependence of the magnetic behaviour.

3.1.1.  $ErFe_{11}Ti$  and  $ErFe_{11}TiH$ . The temperature dependences of  $K_1$  and  $K_{eff}$  obtained with the  $A_{nm}$  parameters that correctly predict the stable magnetic phase of  $ErFe_{11}Ti$  and  $ErFe_{11}TiH$ at zero kelvin are shown in the insets in figure 5. For  $ErFe_{11}Ti$ , see the inset to figure 5(a), the model predicts a spin-reorientation transition from an axial to a canted magnetic phase at 55 K, a prediction that is in excellent agreement with the experimentally observed [4, 10, 28, 54] transition at 50 K. Unfortunately, these parameters also predict a further spin reorientation from a canted to a basal phase at 30 K, a transition that is not experimentally observed.


The experimentally observed spin-reorientation transition in  $\text{ErFe}_{11}\text{Ti}$  at 50 K is driven by the sixth-order crystal field term,  $B_{60}\langle O_{60}\rangle$ . Consequently, the prediction of two spinreorientation transitions by our model probably indicates that the  $A_{60}$  parameter reported for HoFe<sub>11</sub>Ti is greater than the actual  $A_{60}$  parameter of  $\text{ErFe}_{11}\text{Ti}$ . Indeed, the  $A_{nm}$  parameters



**Figure 4.** The temperature dependences of  $K_1 = K_{1R} + K_{1Fe}$ , open circles, and  $K_{eff}$ , solid squares, for TbFe<sub>11</sub>Ti, top, and TbFe<sub>11</sub>TiH, bottom. The  $A_{nm}$  coefficients for TbFe<sub>11</sub>Ti have been obtained from [27]. The  $A_{nm}$  parameters for TbFe<sub>11</sub>TiH have been obtained by assuming that the  $A_{nm}$  coefficients of TbFe<sub>11</sub>Ti vary upon hydrogenation as is proposed in [23].

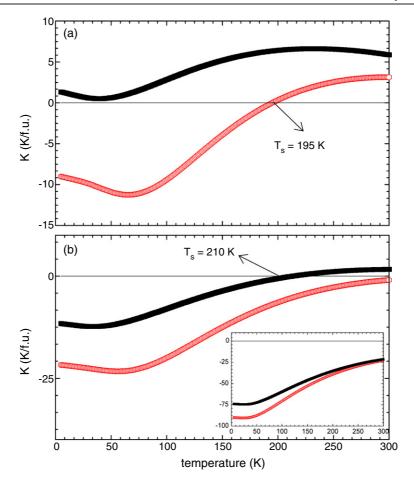
reported by Kou *et al* [4] from magnetic measurements on polycrystalline ErFe<sub>11</sub>Ti, i.e.,  $A_{20} = -21.8 \text{ K}a_0^{-2}$ ,  $A_{40} = -3.0 \text{ K}a_0^{-4}$ ,  $A_{60} = 1.5 \text{ K}a_0^{-6}$ ,  $A_{44} = 70.9 \text{ K}a_0^{-4}$  and  $A_{64} = 0 \text{ K}a_0^{-6}$ , correctly predict just one spin-reorientation transition at about 45 K from an axial to a canted magnetic phase, see figure 5(a). The main difference between the predictions from the parameters of Abadia *et al* [27] and of Kou *et al* [4] results from the value of the  $B_{60}\langle O_{60}\rangle$  term; Kou *et al* [4] have reported an  $A_{60}$  parameter which is five times smaller than that reported by Abadia *et al* [27]. Consequently, with the parameters reported by Kou *et al* [4] the planar contribution to the net rare-earth anisotropy is reduced and just one spin reorientation is predicted, in agreement with the experimental results.

The  $A_{nm}$  parameters obtained for HoFe<sub>11</sub>TiH [23] do not predict the experimentally observed [10, 54] spin reorientation at 40 K in ErFe<sub>11</sub>TiH, as is shown in the inset in figure 5(b). Very similar results are obtained for ErFe<sub>11</sub>TiH if the  $A_{nm}$  parameters reported by Kou *et al* [4] are used and assumed to vary by the same relative amount upon hydrogenation as in the HoFe<sub>11</sub>TiH case. This result is not unexpected because, as is explained above, in ErFe<sub>11</sub>Ti the spin-reorientation transition is driven by the sixth-order term. After hydrogenation  $B_{60}\langle O_{60}\rangle$ is significantly reduced and the axial  $B_{20}\langle O_{20}\rangle$  contribution is increased, see table 2. Hence, if the variation of the  $A_{nm}$  parameters reported for HoFe<sub>11</sub>TiH is used, a significant increase



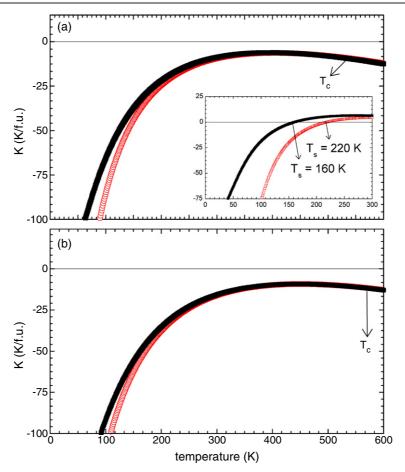
**Figure 5.** The temperature dependences of  $K_1 = K_{1R} + K_{1Fe}$ , open circles, and  $K_{eff}$ , solid squares, for  $\text{ErFe}_{11}\text{Ti}$ , (a), and  $\text{ErFe}_{11}\text{TiH}$ . (b) The  $A_{nm}$  coefficients for  $\text{ErFe}_{11}\text{Ti}$  were obtained from [4] and  $A_{20} = -43.7 \text{ K}a_0^{-2}$  was used for  $\text{ErFe}_{11}\text{TiH}$ . Insets: the temperature dependences of  $K_1 = K_{1R} + K_{1Fe}$ , open circles, and  $K_{eff}$ , solid squares, for  $\text{ErFe}_{11}\text{Ti}$ , (a) and  $\text{ErFe}_{11}\text{TiH}$ , (b), predicted by the  $A_{nm}$  coefficients reported in [27] and [23], respectively.

in the axial contribution of the erbium to the total anisotropy is expected. In fact, these parameters predict a spin reorientation at 18 K, as is shown in the inset in figure 5(b). It should be noted that the  $A_{nm}$  parameters obtained for HoFe<sub>11</sub>TiH give the correct trend for the spin-reorientation temperature, i.e., the spin-reorientation temperature decreases upon hydrogenation, but the predicted 18 K is lower than the experimentally observed 40 K. This result suggests that the relative variations  $\Delta_{nm}$  of the  $A_{nm}$  parameters upon hydrogenation of ErFe<sub>11</sub>Ti are smaller. Hence,  $\Delta_{nm}$  values that are smaller than those reported for HoFe<sub>11</sub>Ti have been tried to reproduce the experimentally observed spin-reorientation temperature in ErFe<sub>11</sub>TiH. In this way, the  $A_{nm}$  parameters reported in table 5 have been obtained. These parameters, which approximately correspond to relative variations in  $\Delta_{nm}$  that are five times smaller than those obtained for HoFe<sub>11</sub>TiH, predict a slight decrease of the spin-reorientation temperature from 45 to 40 K, a prediction that is in agreement with the experimental results. The temperature dependences of  $K_1$  and  $K_{eff}$  obtained with these parameters are shown in figure 5(b). Although these  $A_{nm}$  parameters for ErFe<sub>11</sub>TiH should be refined with the fit of


|                        | 1        |          |          |          |          |
|------------------------|----------|----------|----------|----------|----------|
| Compound               | $A_{20}$ | $A_{40}$ | $A_{60}$ | $A_{44}$ | $A_{64}$ |
| PrFe <sub>11</sub> Ti  | -58.7    | -11.1    | 5.02     | -153.2   | -0.81    |
| PrFe <sub>11</sub> TiH | -337.5   | -8.5     | 1.40     | -200.0   | -0.85    |
| NdFe <sub>11</sub> Ti  | -40.4    | -6.9     | 0.30     | 36.6     | 0        |
| NdFe <sub>11</sub> TiH | -76.8    | -6.9     | 0.30     | 36.6     | 0        |
| SmFe <sub>11</sub> Ti  | -20.5    | -11.1    | 5.02     | -153.2   | -0.81    |
| SmFe <sub>11</sub> TiH | -118     | -8.5     | 1.40     | -200.0   | -0.85    |
| TbFe <sub>11</sub> Ti  | -52.5    | -0.27    | 0.021    | -0.0087  | -8.9     |
| TbFe <sub>11</sub> TiH | -302.3   | -0.21    | 0.006    | -0.011   | -9.3     |
| DyFe <sub>11</sub> Ti  | -20.5    | -11.1    | 5.02     | -153.2   | -0.81    |
| DyFe <sub>11</sub> TiH | -118     | -8.5     | 1.40     | -200.0   | -0.85    |
| HoFe <sub>11</sub> Ti  | -20.5    | -11.1    | 5.02     | -153.2   | -0.81    |
| HoFe <sub>11</sub> TiH | -118     | -8.5     | 1.40     | -200.0   | -0.85    |
| ErFe <sub>11</sub> Ti  | -21.8    | -3.0     | 1.50     | 70.9     | 0        |
| ErFe <sub>11</sub> TiH | -43.7    | -3.0     | 1.50     | 70.9     | 0        |

**Table 5.** The  $A_{nm}$  parameters, in  $Ka_0^{-n}$ , that reproduce the magnetic properties of the RFe<sub>11</sub>Ti and RFe<sub>11</sub>TiH compounds.

other experimental points, some general trends are clear, i.e., the  $A_{20}$  parameter becomes more negative upon hydrogenation and there is virtually no relative variations of the remaining  $A_{nm}$  parameters.


3.1.2. NdFe<sub>11</sub>Ti and NdFe<sub>11</sub>TiH. The temperature dependences of  $K_1$  and  $K_{eff}$  obtained with the  $A_{nm}$  parameters [23] that correctly predict the stable magnetic phase at zero kelvin are shown in figure 6(a) and the inset in figure 6(b). For NdFe<sub>11</sub>Ti, see figure 6(a),  $K_1$  is zero at 195 K, in good agreement with the observed [15] spin reorientation from an axial to a canted magnetic phase at 200 K. In contrast, for NdFe<sub>11</sub>TiH, see inset in figure 6(b), these  $A_{nm}$  parameters [23] predict a basal magnetic phase below its Curie temperature of 614 K. This result is not unexpected as has been explained in section 2.2. In NdFe<sub>11</sub>Ti, the spin-reorientation transition is driven by the second-order and fourth-order crystal field terms, terms that yield basal contributions to the total anisotropy. After hydrogenation, the basal  $B_{20}(O_{20})$  contribution is greatly enhanced, whereas the axial  $B_{60}(O_{60})$  contribution is reduced, see table 2. Consequently, a reinforcement of the neodymium basal contribution to the magnetocrystalline anisotropy and an increase in the spin-reorientation temperature would be expected. However, a decrease in the spin-reorientation temperature is experimentally observed. It should be noted that this surprising behaviour of  $NdFe_{11}TiH$  is very different from that observed in ErFe<sub>11</sub>TiH. In the case of neodymium, the  $\Delta_{nm}$  relative variations reported for HoFe<sub>11</sub>TiH predict a change in the magnetocrystalline anisotropic properties that is the *opposite* of the experimentally observed change. The origin of this discrepancy is not clear. It is possible that, as it is the case for erbium, the  $\Delta_{nm}$  relative variations are smaller than those found for the hydrogenation of HoFe<sub>11</sub>Ti, or that the  $\Delta_{nm}$  relative variations are different for light rare earths.

We have explored the first possibility and assumed that the  $\Delta_{nm}$  relative variations are smaller than those found for HoFe<sub>11</sub>Ti. By trying different sets of  $\Delta_{nm}$  coefficients, the  $A_{nm}$ parameters given in table 5 were found to best reproduce the experimentally observed magnetic behaviour of NdFe<sub>11</sub>TiH. It should be noted that values of  $A_{20}$  smaller than those reported in table 5 predict the appearance of two spin-reorientation transitions. As is the case for ErFe<sub>11</sub>TiH, these parameters correspond to negligible relative variations,  $\Delta_{nm}$ . However, for



**Figure 6.** The temperature dependences of  $K_1 = K_{1R} + K_{1Fe}$ , open circles, and  $K_{eff}$ , solid squares, for NdFe<sub>11</sub>Ti, (a), and NdFe<sub>11</sub>TiH. (b) The  $A_{nm}$  coefficients for NdFe<sub>11</sub>Ti were obtained from [27] and  $A_{20} = -83.8 \text{ K}a_0^{-2}$  was used for NdFe<sub>11</sub>TiH. Inset: the temperature dependences of  $K_1 = K_{1R} + K_{1Fe}$ , open circles, and  $K_{eff}$ , solid squares, for NdFe<sub>11</sub>TiH predicted by the  $A_{nm}$  coefficients reported in [23].

NdFe<sub>11</sub>TiH the agreement is not very good; the predicted spin-reorientation transition from an axial to a basal phase takes place at 210 K, a temperature that is significantly higher than the experimental [15] 125 K, see figure 6(b). In other words, the model does not reproduce the decrease in spin-reorientation temperature that takes place upon hydrogenation of NdFe<sub>11</sub>Ti. This disagreement clearly indicates that in NdFe<sub>11</sub>Ti the  $A_{nm}$  parameters behave differently upon hydrogenation than in the remaining RFe<sub>11</sub>Ti compounds, and very probably that the use of the  $A_{nm}$  parameters obtained for the heavy rare-earth compounds with the light rare-earth compounds is an oversimplification. The decrease in spin-reorientation temperature suggests an increase of  $A_{60}$  upon hydrogenation because, in the case of neodymium, the axial contribution originates from the  $B_{60}\langle O_{60}\rangle$  term. Unfortunately, it is not possible to obtain a reliable set of  $A_{nm}$  parameters from the fit of only one experimental point, i.e., the spin-reorientation temperature. A more detailed analysis, such as the fit of the magnetization versus field, is necessary for NdFe<sub>11</sub>TiH.



**Figure 7.** The temperature dependences of  $K_1 = K_{1R} + K_{1Fe}$ , open circles, and  $K_{eff}$ , solid squares, for PrFe<sub>11</sub>Ti, (a), and PrFe<sub>11</sub>TiH, (b). The  $A_{nm}$  coefficients for PrFe<sub>11</sub>Ti were obtained from [27] but with a more negative  $A_{20}$  parameter of  $-58.7 \text{ K}a_0^{-2}$ . The  $A_{nm}$  parameters for PrFe<sub>11</sub>TiH have been obtained by assuming that the  $A_{nm}$  coefficients of PrFe<sub>11</sub>Ti vary upon hydrogenation as reported in [23]. Inset: the temperature dependences of  $K_1 = K_{1R} + K_{1Fe}$ , open circles, and  $K_{eff}$ , solid squares, for PrFe<sub>11</sub>Ti predicted by the  $A_{nm}$  coefficients reported in [27].

3.1.3.  $PrFe_{11}Ti$  and  $PrFe_{11}TiH$ . The temperature dependences of  $K_1$  and  $K_{eff}$  obtained with the  $A_{nm}$  parameters [27] that correctly predict the stable magnetic phase at zero kelvin of  $PrFe_{11}Ti$  are shown in the inset in figure 7(a). As may be observed in this figure, these parameters do not reproduce the experimentally observed magnetic behaviour of  $PrFe_{11}Ti$ . The parameters correctly predict that the compound adopts a basal magnetic phase at zero kelvin, but they also predict two spin-reorientation transitions at 160 and 220 K, transitions that are not experimentally observed. This wrong prediction supports our hypothesis about the inadequacy of the  $A_{nm}$  parameters obtained for the heavy rare earths for the light rare earths.

We tried to reproduce the experimentally observed magnetic behaviour of  $PrFe_{11}Ti$  by using a more negative value of  $A_{20}$ , the term that is mainly responsible for the planar magnetic anisotropy. We found that a value of  $A_{20}$  of  $-58.7 \text{ K}a_0^{-2}$ , is required to predict that  $PrFe_{11}Ti$  is planar from 4.2 K up to its Curie temperature. Such a value is in excellent agreement with the value of  $-50(10) \text{ K}a_0^{-2}$  obtained for GdFe<sub>11</sub>Ti [20]. By assuming that  $A_{20}$  varies upon hydrogenation as in HoFe<sub>11</sub>Ti, i.e.,  $A_{20}(x) = A_{20}(0) + 4.75 A_{20}(0)$ , we obtain  $A_{20} = -337.5 \text{ K}a_0^{-2}$  for PrFe<sub>11</sub>TiH. The corresponding temperature dependences of  $K_1$  and  $K_{\text{eff}}$  for PrFe<sub>11</sub>Ti and PrFe<sub>11</sub>TiH are shown in figures 7(a) and (b), respectively.

#### 4. Conclusions

The final  $A_{nm}$  parameters that reproduce the magnetic phase diagrams of the RFe<sub>11</sub>Ti and RFe<sub>11</sub>Ti compounds are given in table 5. For the RFe<sub>11</sub>Ti compounds where R is Tb, Dy and Ho, the  $A_{nm}$  parameters obtained from the fit of the single-crystal magnetization curves [27, 28] correctly predict the temperature dependence of the macroscopic magnetocrystalline anisotropy.

For the remaining compounds where R is Pr, Nd and Er, for which there are no reports of  $A_{nm}$  parameters resulting from the fit of single-crystal magnetization curves, we have found that the  $A_{nm}$  parameters reported for R = Ho or Dy, are unable to reproduce the temperature dependence of the magnetocrystalline anisotropy. For these compounds, we have used the model proposed by Kuz'min [49, 51] to determine the  $A_{nm}$  parameters that best reproduce their magnetocrystalline anisotropy.

For  $PrFe_{11}Ti$  a more negative  $A_{20}$  value than that reported earlier [27, 28] is required to reproduce its basal magnetic phase from 4.2 K to the Curie temperature. This more negative value is in perfect agreement with the value measured [20] by gadolinium-155 Mössbauer spectral studies of GdFe<sub>11</sub>Ti. For NdFe<sub>11</sub>Ti and ErFe<sub>11</sub>Ti the  $A_{nm}$  parameters reported earlier [27, 28] cannot predict the spin-reorientation transitions that occur in these compounds. However, these spin-reorientation transitions can be reproduced with the  $A_{nm}$ parameters reported by Kou *et al* [4] from magnetic measurements on polycrystalline samples.

Thus, for the RFe<sub>11</sub>Ti compounds, different  $A_{20}$  values have been used to reproduce their magnetic anisotropy and its temperature dependence. Variations in  $A_{20}$  values with the rare earth are not unexpected, as  $A_{20}$  measures the electric field gradient at the rare-earth site, a gradient that depends directly on the charge distribution. The charge distribution itself is very sensitive to the lattice parameters. In the RFe<sub>11</sub>Ti compounds, an anisotropic lattice contraction is observed throughout the rare-earth series and is reflected, in a complex fashion, in the different  $A_{20}$  values.

For the RFe<sub>11</sub>TiH compounds, the variation upon hydrogenation of the crystal field parameters reported for HoFe<sub>11</sub>TiH [23] correctly describes the magnetic behaviour when R is Tb, Dy, Ho and Pr. However, these parameters predict a significant reduction in the basal contribution of the erbium sublattice to the total magnetocrystalline anisotropy, a reduction that is not experimentally observed. The spin-reorientation transition experimentally observed in  $\text{ErFe}_{11}$ TiH can be reproduced by assuming that the relative variations of the  $A_{nm}$  parameters upon hydrogenation are smaller in  $\text{ErFe}_{11}$ Ti than in HoFe<sub>11</sub>Ti.

For NdFe<sub>11</sub>TiH, the variation upon hydrogenation of the  $A_{nm}$  parameters reported for HoFe<sub>11</sub>TiH predicts a significant increase in the basal contribution of the neodymium sublattice to the total magnetocrystalline anisotropy, an increase that is not experimentally observed. As in ErFe<sub>11</sub>TiH, the spin reorientation that occurs in NdFe<sub>11</sub>TiH may be reproduced by assuming that the relative variations in the  $A_{nm}$  parameters upon hydrogenation are smaller than in HoFe<sub>11</sub>Ti. However, it is not possible to reproduce the experimentally observed decrease in spin-reorientation temperature that takes place upon hydrogenation.

Throughout the RFe<sub>11</sub>TiH series, the main influence of hydrogen is to modify  $A_{20}$ . This modification is again expected [20] because hydrogen is the nearest neighbour of the rare earth, introduces a lattice expansion and modifies the charge distribution around the rare earth.

Similar effects resulting from the insertion of hydrogen, carbon and nitrogen into rare-earth– iron intermetallic compounds have been described earlier [55, 56].

In conclusion, the magnetic anisotropy and its temperature dependence in the  $RFe_{11}TiH$ and  $RFe_{11}TiH$  compounds result mainly from the rare-earth contribution; the iron contribution to the anisotropy does not vary [22] much either with the rare earth or upon hydrogenation. The first-order crystal field term makes a major contribution and in some cases is found to be more negative than had previously been reported. However, the higher-order terms cannot be ignored [57] in describing the magnetic properties of the  $RFe_{11}Ti$  and  $RFe_{11}TiH$  compounds.

## Acknowledgments

The financial support of the University of Liège for grant number 2850006 and of the 'Fonds de la Recherche Fondamentale Collective' for grant 2.4522.01 is acknowledged with thanks. This work was partially supported by the US National Science Foundation through grants DMR95-21739 and INT-9815138, the Ministère de la Communauté Française de Belgique, convention PVB/ADK/FR/ad2685 and the 'Centre National de la Recherche Scientifique, France' through grants action initiative numbers 7418 and 18213.

## References

- [1] de Mooij D B and Buschow K H J 1988 J. Less Common Met. 136 207
- [2] Buschow K H J 1991 J. Magn. Magn. Mater. 100 79
- [3] Hu B P, Li H S, Gavigan J P and Coey J M D 1989 J. Phys.: Condens. Matter 1 755
- [4] Kou X C, Zhao T S, Grössinger R, Kirchmayer H R, Li X and de Boer F R 1993 Phys. Rev. B 47 3231
- [5] Kuz'min M D and Zvezdin A K 1998 J. Appl. Phys. 83 3239
- [6] Zhang L Y and Wallace W E 1989 J. Less-Common Met. 149 371
- [7] Nikitin S A, Tereshina I S, Verbetsky V N and Salamova A A 2001 J. Alloys Compounds 316 46
- [8] Isnard O 2003 J. Alloys Compounds 356/357 17
- [9] Long G J, Hautot D, Grandjean F, Isnard O and Miraglia S 1999 J. Magn. Magn. Mater. 202 100
- [10] Piquer C, Hermann R P, Grandjean F, Long G J and Isnard O 2003 J. Appl. Phys. 93 3414
- [11] Piquer C, Grandjean F, Long G J and Isnard O 2003 J. Alloys Compounds 353 33-4
- [12] Piquer C, Isnard O, Grandjean F and Long G J 2003 J. Magn. Magn. Mater. 263 235-42
- [13] Piquer C, Isnard O, Grandjean F and Long G J 2003 J. Magn. Magn. Mater. 265 156
- [14] Piquer C, Hermann R P, Grandjean F, Isnard O and Long G J 2003 J. Phys.: Condens. Matter 15 7395
- [15] Piquer C, Grandjean F, Isnard O, Pop V and Long G J 2004 J. Appl. Phys. 95 6308
- [16] Piquer C, Grandjean F, Isnard O, Pop V and Long G J 2004 J. Alloys Compounds 277 1
- [17] Piquer C, Grandjean F, Long G J and Isnard O 2005 J. Alloys Compounds 388 6
- [18] Piquer C, Grandjean F, Long G J and Isnard O 2006 J. Phys.: Condens. Matter 18 205
- [19] Isnard O, Guillot M, Miraglia S and Fruchart D 1996 J. Appl. Phys. 79 5542
- [20] Isnard O, Vulliet P, Sanchez J P and Fruchart D 1998 J. Magn. Magn. Mater. 189 47
- [21] Apostolov A, Bezdushnyi R, Stanev N, Damianova R, Fruchart D, Isnard O and Soubeyroux J L 1997 J. Alloys Compounds 253/254 318
- [22] Isnard O, Miraglia S, Guillot M and Fruchart D 1998 J. Alloys Compounds 275-277 637
- [23] Nikitin S A, Tereshina I S, Pankratov N Yu and Skourski Yu V 2001 Phys. Rev. B 63 134420
- [24] Isnard O and Guillot M 1998 J. Appl. Phys. 83 6730
- [25] Nikitin S A, Tereshina I S, Verbetsky V N, Salamova A A, Skokov K P, Pankratov N Yu, Skourski Yu V, Tristan N V, Zubenko V V and Telegina I V 2001 J. Alloys Compounds 322 42
- [26] Tereshina I S, Nikitin S A, Pankratov N Yu, Bezkorovajnaya G A, Salamova A A, Verbetsky V N, Mydlarz T and Skourski Yu V 2001 J. Magn. Magn. Mater. 231 213
- [27] Abadia C, Algarabel P A, Garcia-Landa B, Ibarra M R, del Moral A, Kudrevatykh N V and Markin P E 1998 J. Phys.: Condens. Matter 10 349
- [28] Hu B P, Sun H, Coey J M D and Gavigan J P 1990 Phys. Rev. B 41 2221
- [29] Hu B P, Wang K Y, Wang Y Z, Wang Z X, Yan Q W, Zhang P L and Sun X D 1995 Phys. Rev. B 51 2905
- [30] Rudowicz C 1985 J. Phys. C: Solid State Phys. 18 1415

- [31] Stevens K W H 1952 Proc. R. Soc. A 65 209
- [32] Buschow K H J, de Mooij D B, Brouha M M, Smit H H A and Thiel R C 1988 IEEE Trans. Magn. 24 1161
- [33] Dirken M W 1991 PhD Thesis Univ. Leiden
- [34] Middleton D P, Mulder F M, Thiel R C and Buschow K H J 1995 J. Magn. Magn. Mater. 146 123
- [35] Freeman A J and Desclaux J P 1979 J. Magn. Magn. Mater. 12 11
- [36] Franse J J M and Radwanski R J 1993 Handbook of Magnetic Materials vol 7, ed K H J Buschow (Amsterdam: North-Holland) chapter 5
- [37] Yamada M 1998 Phys. Rev. B 38 620
- [38] Kuz'min M D 2000 J. Appl. Phys. 88 7217
- [39] Guslienko K Yu, Kou X C and Grössinger R 1995 J. Magn. Magn. Mater. 150 383
- [40] Luong N H, Thuy N P and Franse J J M 1992 J. Magn. Magn. Mater. 104–107 1301
- [41] Kazakov A A, Kudrevatykh N V and Markin P E 1995 J. Magn. Magn. Mater. 146 208
- [42] Tereshina I S, Gaczy'nski P, Rusakov V S, Nikitin S A, Suski W, Tristan N V and Palewski T 2001 J. Phys.: Condens. Matter 13 8161
- [43] Kaneko T, Yamada M, Ohashi K, Tawara Y, Osugi R, Yoshio H, Kido G and Nakagawa Y 1989 10th Int. Workshop on Rare-earth Magnets and Their Applications (Kyoto, 1989)
- [44] Apostolov A, Bezdushnyi R, Damianova R, Stanev N and Naumova I 1995 J. Magn. Magn. Mater. 150 393
- [45] Arnold Z, Kamaràd J, Mikulina O, Garcia-Landa B and Ibarra M R 2000 Proc. 11th Int. Symp. on Magnetic Anisotropy and Coercivity in Rare-Earth Transition Metal Alloys ed H Kaneko, M Homma and M Okada (Tokyo: The Japan Institute of Metals) p S35
- [46] Janssen Y, Brück E, Buschow K H J, de Boer F R, Kamaràd J and Kudrevatykh N V 2002 J. Magn. Magn. Mater. 242–245 1064
- [47] Andreev A V, Sechovsky V, Kudrevatykh N V, Sigaev S S and Tarasov E N 1988 J. Less-Common Met. 144 L21
- [48] Apostolov A, Bezdushnyi R, Stanev N, Damianova R, Fruchart D, Soubeyroux J L and Isnard O 1998 J. Alloys Compounds 265 1
- [49] Kuz'min M D, Garcia L M, Artigas M and Bartolomé J 1996 Phys. Rev. B 54 4093
- [50] Tomey E, Bacmann M, Fruchart D, Soubeyroux J L and Gignoux D 1995 J. Alloys Compounds 231 195
   [51] Kuz'min M D 1992 Phys. Rev. B 46 8219
- [52] Arnold Z, Kamarad J, Mikulina O, Garcia-Landa B, Abadia C, Ibarra M R and Kudrevatykh N V 1999 J. Magn. Magn. Mater. 196/197 748
- [53] Zhang L Y, Boltich E B, Sinha V K and Wallace W E 1989 IEEE Trans. Magn. 25 3303
- [54] Tereshina I S, Nikitin S A, Nikiforov V N, Ponomarenko L A, Verbetsky V N, Salamova A A and Skokov K P 2002 J. Alloys Compounds 345 16
- [55] Piquer C, Bartolomé J, Artigas M and Fruchart D 2000 Phys. Rev. B 62 1004
- [56] Chaboy J and Piquer C 2002 Phys. Rev. B 66 104433
- [57] Wang J L, Campbell S J, Cadogan J M, Tegus O and Edge A V J 2005 J. Phys.: Condens. Matter 17 3689